fbpx
SOLIDWORKS-Flow-Simulation

SOLIDWORKS Flow Simulation + HVAC, conoce sus capacidades.

¿Podríamos usar SOLIDWORKS Flow Simulation para simular la dispersión de patógenos en un recinto ventilado con presencia humana?

La crisis sanitaria que estamos atravesando, ha desembocado en un sin fin de estudios relacionados con ella en muchos y diferentes sectores. Desde ensayos clínicos, hasta diferentes pruebas para evitar la propagación del virus que provoca la enfermedad Covid-19.

Una vez más SOLIDWORKS nos lo pone fácil y nos permite con sus herramientas y aplicaciones hacer estudios y simulaciones para diferentes proyectos y situaciones. La crisis sanitaria supone un contexto en el que podemos trabajar con esta herramienta y hacer diferentes casos de estudio.

La respuesta a la pregunta planteada al principio de este post es: ¡sí!, podemos usar SOLIDWORKS Flow Simulation para simular la dispersión de patógenos en un recinto ventilado y con presencia humana. Debes saber que esta herramienta tiene dos módulos complementarios que son el HVAC y el módulo de refrigeración de dispositivos electrónicos.

Pues bien, Con la herramienta de simulación SOLIDWORKS Flow Simulation y su complemento HVAC es posible, entre otros muchos tipos de estudios, obtener trazados de calidad de aire y dispersión de contaminantes en recintos con o sin ventilación y con ocupación humana.

Para ilustrar un poco las capacidades del software para este tipo de casos de estudio, pongo el siguiente ejemplo. Se trata de una sala de aislamiento de un hospital, estimaremos la efectividad del sistema de ventilación con respecto a la eliminación de contaminantes.

SOLIDWORKS Flow Simulation

Los parámetros que reporta el módulo HVAC para estimar la efectividad del sistema de ventilación con respecto a la eliminación de contaminantes son:

  • Efectividad de eliminación de contaminantes (CRE).
  • Índice de calidad del aire local (LAQI).

Para poder realizar la simulación, es preciso definir correctamente las condiciones de contorno con sus parámetros:

  • Caudal de entrada ventilación forzada = 4,8 m3/min
SOLIDWORKS Flow Simulation
  • Caudal de salida ventilación forzada = 2,6 m3/min
SOLIDWORKS Flow Simulation
  • Presión atmosférica rejilla a baño = 101,325 Pa y 19,5 ºC
SOLIDWORKS
  • Caudal de aire exhalado contaminado de paciente = 12 l/min
SOLIDWORKS Flow

Para ver cómo cambia la calidad del aire con respecto al contaminante contenido a través de la habitación, creamos un trazado de corte con el parámetro LAQI del aire exhalado del paciente a una distancia de 1 m del piso, es decir, ligeramente por encima del nivel de la cabeza del paciente. Cuanto mayor sea el valor, menor será la concentración del contaminante y mejor se eliminará. Un valor igual o mayor que 1 indica aire limpio.

SOLIDWORKS Flow Simulation

Puedes echar un vistazo al siguiente video, para ver una animación de este trazado a lo largo de toda la altura de la habitación.

También es posible trazar las trayectorias del flujo exhalado contaminado, podemos representarlo de múltiples formas:

Observa en el siguiente video una animación de este trazado a lo largo de toda la altura de la habitación.

A modo de ejemplo, esto sería un planteamiento sencillo del problema, si quisiéramos ser más finos en la simulación podríamos incluir un caudal de inhalación en la boca de personas sanas, incluso la definición de las propias partículas del virus. HVAC también tiene la capacidad de simular la dispersión de partículas en suspensión, (en ese caso habría que dar datos físicos de dichas partículas).

Por otro lado, hemos simplificado el caso como un estudio Estacionario, esto es, el aire exhalado del paciente es continuo en el tiempo, si quisiéramos considerar un caudal variable en función del tiempo podríamos hacerlo sin problema, en ese caso tendríamos que hacer un estudio Transitorio.

Espero que este artículo os haya resultado interesante, si todavía quieres saber más sobre esta herramienta, puedes echar un vistazo a este otro post donde hablo sobre otras aplicaciones de flow simulation. Si quieres aprender a usar o mejorar tus habilidades con SOLIDWORKS, no dejes de visitar nuestra plataforma de formación online, donde yo mismo soy profesor. Ahí encontrarás cursos de diferentes niveles y duración que te pueden resultar muy interesantes.

¡No olvides compartir este post en tus redes sociales!

¡Nos vemos en próximos post!

Diferencias entre un ESTUDIO DE TENSIÓN TÉRMICA y un ESTUDIO TÉRMICO

Hoy vamos a analizar las posibilidades existentes en SOLIDWORKS Simulation a la hora de realizar análisis térmicos, centrándonos en los estudios de tensión térmica y los estudios térmicos.

estudio térmico

1.- En los estudios de tensión térmica, disponible en el paquete SOLIDWORKS Simulation Standard, podemos determinar las tensiones, deformaciones, desplazamientos y reacciones debidas a una carga térmica que nosotros introducimos en nuestro modelo como temperatura aplicada sobre una cara o sólido. Podríamos asignar diferentes temperaturas en distintas caras/sólidos.

Los resultados que reportan los estudios de tensión térmica son entre otros:

Tensiones de von Mises:

estudios de tensión térmica

Desplazamientos:

estudio térmico simulation

2.- Los Estudios Térmicos, disponible en el paquete SOLIDWORKS Simulation Professional, se ocupan de analizar la transferencia de calor en cuerpos sólidos y nos permiten calcular los flujos de calor, así como la distribución de temperaturas en nuestros modelos (gradientes de temperatura).

En los estudios Térmicos se analiza diferentes modos de transferencia de calor:

Conducción

conducción del calor simulation

Convección

convección simulación
convección natural

Radiación

radiación

Los resultados que reportan los Estudios Térmicos son entre otros:

Distribución de temperaturas:

distribución de temeraturas

Flujo de calor resultante:

flujo de calor

mejoras solidworks 2020

Mejoras en Simulación: SOLIDWORKS Simulation 2020

Seguimos con la serie de post sobre las mejoras que traerá SOLIDWORKS 2020, tanto en CAD como en Multiproduct. Estos son los otros posts:

Post 1: Mejoras en SOLIDWORKS CAD 202
Post 2: Mejoras en rendimiento en MULTIPRODUCT 2020
Post 3: Mejoras en gestión de datos: SOLIDWORKS PDM y Manage 2020
Post 5: Mejoras en documentación técnica: SOLIDWORKS Composer y Visualize

Ahora nos toca hablar de simulación.

Simulation

  • En cuanto a la interfaz de usuario, ahora podremos usar SHIFT + C para contraer el gestor y tener el control del Feature Manager de Simulation.
  • Evaluador de simulación: El evaluador de simulación comprueba la configuración de un estudio para determinar si es la idónea para obtener una simulación correcta.
    El Evaluador de simulación comprueba las condiciones relacionadas con la carpeta de resultados, la capacidad de almacenamiento de la unidad de resultados, los materiales utilizados en la simulación y el volumen de malla. Si las condiciones en el estudio impiden que la simulación se ejecute de modo satisfactorio, el cuadro de diálogo del Evaluador de simulación informa acerca de las medidas oportunas que se pueden tomar.
  • Eliminador de estudios sin cargar: en 2020 cualquier estudio puede ser borrado sin cargar resultados, ahorrando tiempo eliminando datos no deseados.
  • Cargas térmicas para vigas: Podrás aplicar cargas térmicas en juntas de viga y sólidos de viga. Después de ejecutar un análisis térmico en un modelo con vigas, se pueden importar las temperaturas a estudios estáticos lineales, estáticos no lineales, de frecuencia, de pandeo o dinámicos no lineales; para realizar análisis de tensión.
    ¿Cómo se hace?
mejoras SOLIDWORKS simulation 2020
  • Malla de alta calidad y de calidad mixta en borrador: Se ha mejorado la formulación de malla para estudios estáticos lineales, con lo que los elementos sólidos de alta calidad y de borrador pueden coexistir en la misma definición de malla. Se pueden seleccionar los sólidos que deseamos mallar mediante una malla de alta calidad o de borrador. La simulación se ejecuta con una definición de malla híbrida que tiene, al mismo tiempo, elementos de borrador y tetraédricos de alta calidad. La malla híbrida solo está disponible para estudios estáticos lineales con sólidos.
  • Conexión distribuida: La introducción del acoplamiento distribuido mejora la formulación de conectores de pasadores y pernos.

    Básicamente, el acoplamiento distribuido permite la deformación de caras asociadas a conectores de pasadores y pernos, con lo que el nivel de realismo de la representación del comportamiento del conector es mucho mayor. El acoplamiento distribuido para pasadores y pernos solo está disponible para los estudios estáticos lineales.

    Cuando se define un Tipo de conexión como Distribuida, una formulación de acoplamiento distribuido conecta un nodo de referencia (nodo de elemento de viga de un vástago de perno) a un grupo de nodos de acoplamiento dentro de las regiones de impresión de la cabeza y tuerca de un perno. El acoplamiento distribuido restringe el movimiento de los nodos de acoplamiento a la traslación y la rotación del nodo de referencia.
conexión de perno distribuida
  • Fuerzas de cuerpo libre para estudios no lineales: Para resultados más detallados, después de ejecutar un estudio estático no lineal o dinámico no lineal, se pueden indicar las fuerzas de cuerpo libre en entidades geométricas seleccionadas que se desea aplicar en cada paso de solución.

Plastics

  • Mejoras en mallas: se ha optimizado el flujo de trabajo de creación de malla
  • Condiciones de contorno basadas en geometría: En esta nueva versión se pueden asignar más condiciones de contorno a las entidades geométricas directamente que en versiones anteriores.

    Puedes aplicar estas condiciones de contorno en entidades geométricas, tales como:
    Injection Location
    Válvulas de control
    Temperatura de la pared del molde
    Fuerza de cierre
    Cara de simetría
    Insertar propiedades (antes, Insertar contorno)
    Respiraderos
    Excluir de deformación (Elemento canal de colada, en versiones anteriores).
    Canales calientes prellenados
    Entrada de refrigerante

Aunque la mayor parte de las condiciones de contorno están basadas en geometría, las siguientes siguen estando basadas en malla:

  1. Condiciones límites de deformación
  2. Factor de flujo de inyección
  3. Modificar espesor local

ejemplo de simulación impacto

¿Sobrevivirá un televisor al impacto de un mando propulsado por la ira?

Seguro que algo de esto te hará sentirte identificad@. Esos momentos en los que estamos viendo un partido de nuestro equipo favorito o jugando a un videojuego o viendo el final de una serie muy molona…
Y de repente… la cosa se pone fea: tu equipo pierde por sorpresa, el juego falla o tu personaje favorito tiene un triste desenlace….

¿Sabes lo que suele suceder en esos casos? Si… que la ira se apodera de ti y, antes de ser consciente de la situación, el mando vuela por el salón rumbo al televisor. ¡Desastre!

Y a nosotros que nos gusta adelantarnos a lo que va a pasar con simulaciones, queremos hacer que el tiempo se detenga y hacer un análisis de simulación no lineal de lo que podría pasar 😀

Durante esta demo, te mostramos cómo impacta un mando en una tele y, más importante aún, conocerás cómo se pueden utilizar las herramientas de análisis para:

  • Personalizar las propiedades de los materiales
  • Conceptualizar y plantear problemas
  • Evaluar e interpretar los resultados
(Si no funciona el enlace, ábrelo en una nueva ventana de incógnito)

Te invitamos a ver simpático vídeo para averiguar lo que ocurre cuando la furia del jugador impacta de lleno en un televisor 4K.

Solicítanos un presupuesto y utiliza las herramientas de SOLIDWORKS Simulation para diseñar el próximo golpe.

calcular cordones de pieza soldada

Calcular cordones de soldadura con SOLIDWORKS Simulation – Parte 1

Este es el primero de una serie de posts en los que os enseñaré cómo calcular cordones de soldadura con SOLIDWORKS Simulation para los tipos de unión señalados en el siguiente cuadro a través de 4 ejercicios básicos.

solidworks pieza soldada

EJERCICIO 1: UNIÓN DE CHAPA A TOPE EN T – SOLDADURA EN ÁNGULO

Se trata de comprobar los cordones de soldadura en ángulo dispuestos entre estas dos chapas, la chapa horizontal la fijaremos en el espacio y la vertical la someteremos a una fuerza de tracción de 200 kN aplicados en el extremo libre, ambas chapas tienen un espesor de 10 mm

Contamos con dos sólidos independientes, a los que hemos asignado un acero S275JR.

pieza soldada

Cuando definamos los conectores de Soldadura de arista en SOLIDWORKS Simulation debemos seleccionar dos entidades a conectar, la primera entidad ha de ser siempre la pieza terminada, es decir, la que no es pasante, y tiene que ser además una entidad de tipo superficie que mallaremos con elementos finitos de vaciado. La segunda entidad puede ser tanto una entidad de tipo superficie o un sólido.

Dicho esto, debemos transformar la pieza terminada en una entidad de tipo superficie, para ello hacemos uso por ejemplo del comando Superficie media… acto seguido eliminamos el sólido de esta chapa para quedarnos únicamente con la superficie que representará la fibra neutra de dicha chapa.

tipo superficie solidworks

Cumplida esta condición iniciamos nuestro estudio de tipo Análisis estático y le damos el nombre por ejemplo SOLDADURA.

simulation

En el gestor de simulación, bajo la carpeta de Piezas vemos que el material se ha asignado a todos los componentes porque ya ha sido definido en el gestor de diseño, pero para la superficie no se ha definido todavía el espesor real de la chapa.

En la carpeta Conexiones agregamos entonces el conector de tipo Soldadura de arista… en este caso elegimos el tipo Redondeo, de doble lado.

  

A continuación, en el primer campo, seleccionamos la cara de la superficie que representa la pieza terminada y en el segundo campo, seleccionamos la cara de la otra chapa, que en este caso la estamos tratando como un sólido. Se selecciona de forma automática la arista de intersección de estas dos entidades.

solidworks arista

Ahora, elegimos qué normativa vamos a emplear para efectuar la comprobación y/o dimensionado del cordón, en este caso vamos a emplear el Estándar europeo que se basa en el Eurocódigo EC3.

Para esta norma:

resistencia a tracción solidworks

Además, hay unos mínimos constructivos que también hay que cumplir.

Con esta información completamos el PropertyManager del conector.

Como la chapa más delgada tiene un espesor de 10 mm y el acero empleado es un S275JR la resistencia a tracción vale 430 N/mm2.

El factor de correlación, por tratarse de un acero S275JR, vale 0,85

El factor de seguridad para calcular la resistencia de las uniones es siempre 1,25.

Como la chapa más delgada a unir tiene un espesor de 10 mm, el tamaño mínimo de espesor de garganta tendrá que ser de 3 mm, por otro lado, el tamaño máximo será 0,7 x 10 = 7 mm, nosotros escogemos 5 mm como tamaño estimado.

Ahora asignamos una sujeción de tipo Geometría fija… a la cara inferior de la chapa horizontal.

El siguiente paso es aplicar una carga de tipo Fuerza… sobre la arista superior de la chapa vertical, esta fuerza valdrá 200 kN o 200.000 N y será de tracción.

Ahora mallamos el modelo con una malla basada en curvatura y con los valores predeterminados.

Ejcutamos el estudio.

En el menú contextual de la carpeta Resultados elegimos Definir trazado de comprobación de soldadura.

Aceptamos el PropertyManager

Nos aparece una ventana que nos alerta de que hay un conector de soldadura que no cumple, si lo seleccionamos en la lista, en la zona de gráficos nos informa del tamaño de soldadura necesario con valor 6,2 mm.

Si pulsamos el botón Detalles… se abre el siguiente PropertyManager, en el cuadro superior se muestran las fuerzas resultantes en la arista por unidad de longitud.

Y en el cuadro inferior se muestran las tensiones normales y tangenciales de la garganta de soldadura, estos valores se refieren al cordón optimizado, esto es, para un espesor de garganta a = 6,2 mm

Tienen que cumplirse las siguientes condiciones:

simulación

WEBINAR: cordones de soldadura con SOLIDWORKS Simulation

WEBINAR: Cómo calcular cordones de soldadura con SOLIDWORKS Simulation

GRACIAS A NUESTROS CLIENTES
Si eres cliente con mantenimiento activo, ya sabes que tienes a tu disposición a nuestro equipo de soporte técnico para llamarles siempre que lo necesites. Estamos atentos a las preguntas que nos hacéis e intentamos resolverlas lo más rápido posible.
Muchas gracias a nuestros clientes que nos mandan sus preguntas.

Hoy he creado esta webinar respondiendo a una demanda de un cliente que quizás sea de utilidad para vosotros también.

La pregunta es:
«¿Es posible dimensionar cordones de soldadura en SOLIDWORKS Simulation?»
Para ello os enseñaré cómo calcular cordones de soldadura para distintos tipos de unión.

Espero que os guste o no dejéis de mandarnos vuestras consultas a soporte@easyworks.es

formación de solidworks simulación

Curso de SOLIDWORKS Simulation presencial

formación de solidworks simulación

Del 30 de julio al 03 de agosto de 2018, en horario de 16 a 21 h., os traemos el curso presencial de SOLIDWORKS Simulation. Será en modo presencial, en las instalaciones de Grupo Esypro (en Gondomar, los alrededores de la ciudad de Vigo).

Un curso diseñado para ya usuarios de SOLIDWORKS CAD que quieren sacarle el máximo provecho a SOLIDWORKS Simulation. Analizaremos en profundidad el análisis de elementos finitos (FEA), que abarca todo el proceso de análisis, desde el mallado hasta la evaluación de resultados para piezas y ensamblajes.

El curso tratará de cerca el análisis de estrés lineal, el análisis de brecha/contacto y las mejores prácticas a la hora de trabajar con Simulation.

La simulación es muy importante hoy en día en las empresas de diseño industrial, ya que los ahorros que se consiguen realizando en tu ordenador un análisis previo a fabricar son enormes. Lo mejor es que puedes realizar diversos tipos de análisis y pruebas durante el diseño con una gran variedad de parámetros: durabilidad, respuesta dinámica y estática, movimiento del ensamblaje, transferencia de calor, dinámica de fluidos y moldeo de plásticos por inyección.

Como ves, este curso sirve para personas que trabajen en distintos sectores industriales.

 

Los cursos de Easyworks se caracterizan por ser cursos muy personalizados, con un número reducido de personas y porque los profesores son profesionales que trabajan día a día con los programas que enseñamos y que pueden contarte los trucos y consejos para optimizar el trabajo.

Si necesitas la formación para trabajar con el software, te recomendamos que realices cursos con expertos que lo usen  en su trabajo.

Otros cursos de MySolidworks, online y en inglés:

MySolidworks Flow Simulation simulation premium mysolidworks Solidworks plastics online

¿Qué estás buscando?
Filtrar por fecha