fbpx
Easyworks puede ayudarte con tu simulación

Descarga gratis: Podemos ayudarte con tu simulación

Los análisis de simulación son una de las tareas más complejas de realizar, pero que a su vez aportan un gran valor añadido a la empresa que los realiza.

La simulación es un recurso muy útil para todas las empresas del sector industrial. Sin embargo, es muy común que no todas las empresas necesiten realizar simulaciones continuamente, sino para un proyecto específico o durante un tiempo limitado. Es por ello que, desde Easyworks, te ofrecemos la posibilidad de subcontratar los servicios avanzados de simulación y análisis estructural.

Estos serán útiles para validar estructuras tradicionales o singulares y así evitar la fabricación de costosos prototipos. Podremos validar tanto estructuras tradicionales como aquellas que por su singularidad no cuenten con una regulación normativa a la hora de justificar su capacidad resistente y aptitud.

El Método de los Elementos Finitos es el más adecuado para simular el comportamiento mecánico de diseños complejos e innovadores.

¿Qué elementos podemos analizar?

  • Estructuras fijas y provisionales: Escaleras, pasarelas, estanterías comerciales y logísticas, torres para vallas publicitarias…
  • Estructuras móviles y auxiliares: Grúas de izado, carretillas de carga y contenedores, jaulas de servicio y mesas elevadoras.
  • Útiles y uniones especiales: útiles de izado, conexiones singulares.
  • Maquinaria: Componentes de máquina, bastidores, bancadas.
  • Optimización Topológica y otros: Aligeramiento de componentes de todo tipo, estudios térmicos, dinámica de fluídos.

¿Qué análisis podemos realizar?

  • Estudios estáticos lineales: Tensiones, desplazamientos, deformaciones unitarias y factor de seguridad para los componentes con material lineal. Cálculo de uniones atornilladas y soldadas.
  • Estudios de frecuencia: Frecuencias naturales y formas modales en piezas y ensamblajes.
  • Estudios de pandeo: Cargas críticas de pandeo lineales y los modos de deformación en piezas y ensamblajes.
  • Estudios térmicos: Analizan la distribución de temperatura y el flujo de calor debido a la conducción, la convección, la radiación y análisis de tensiones térmicas.
  • Estudios de fatiga: Análisis de la vida y daños del diseño debidos a las cargas cíclicas definidas por eventos de amplitud constante o variable.
  • Estudios no lineales: Estudios no lineales estáticos y dinámicos. Tensiones, desplazamientos, deformaciones unitarias para los componentes con material no lineal.

Si tienes cualquier duda, en nuestra web de servicios puedes informarte de todas las formas en las que Easyworks puede ayudar a tu empresa. Si quieres contactar con nosotros, puedes hacerlo a través de nuestro formulario de contacto.

Aprovechamos para regalarte un ebook gratuito donde entenderás mejor las ventajas de la simulación para tu empresa.

Simulación multifísica secuencial

En la vida real muchos fenómenos físicos no suceden de manera independiente, a menudo se presentan de forma simultánea, mezclando problemas mecánicos, térmicos, de dinámica de fluidos y cinemáticos…

SOLIDWORKS Simulation resuelve este problema desacoplando dichos fenómenos y simulándolos de forma secuencial y dependiente en un proceso muy sencillo.

Gracias a este enfoque podemos secuenciar de múltiples formas estudios provenientes de los tres complementos de simulación: SOLIDWORKS Simulation; SOLIDWORKS Flow Simulation; SOLIDWORKS Motion.

simulación de viento

En el presente post, demostraremos cómo calcular la distribución de presiones debidas a la acción del viento sobre una estructura compleja de grandes dimensiones. A continuación, vamos a transferir esas cargas a SOLIDWORKS Simulation con la finalidad de realizar un análisis estático y así poder determinar su resistencia y estabilidad frente al vuelco.

Para este ejemplo vamos a suponer un viento huracanado de 40 m/s = 144 km/h impactando lateralmente contra un letrero lastrado cuya altura es de 7 metros.

Se trata de averiguar cuál será el lastre mínimo necesario para evitar el vuelco de la estructura.

El análisis conjunto de SOLIDWORKS Flow Simulation y SOLIDWORKS Simulation nos permitirá determinar cuál ha de ser la carga mínima necesaria en las áreas de lastre para mantener estable la torre cuando el viento actúa en una determinada dirección.

NOTA: Tendríamos que realizar este estudio para distintas direcciones de viento, sin embargo, para ilustrar el procedimiento tan sólo desarrollaremos el ejemplo para una sola dirección.

Estos serían los pasos a seguir:

1.- Crear proyecto

Creamos un nuevo estudio utilizando el asistente:

a) Se trata de un Análisis de tipo Externo, se excluyen todas las cavidades internas del modelo y se establece la acción de la gravedad en la dirección correcta.

b) Se toma como fluido el Aire

c) En Condiciones de Contorno dejamos los valores por defecto:

d) Es en el apartado de Condiciones ambientales Iniciales donde especificamos la velocidad de 40 m/s en la dirección correspondiente:

2.- Ajustar Dominio Computacional

Ajustamos las dimensiones del Dominio Computacional para capturar bien todo el fenómeno, recordad que haremos este estudio para el viento actuando en el sentido opuesto al eje global X, por esta razón hemos dado más dimensión al dominio a barlovento:

3.- Establecer los parámetros de la malla global

Ajustamos los parámetros de malla global con valores apropiados:

Simulación multifísica secuencial

4.- Ejecutar estudio

5.- Crear trazados

Creamos trazados de corte para las velocidades y trazados de superficie para las presiones relativas sobre los paramentos del letrero.

calcular distribución de presiones

6.- Exportar resultados a Simulation

En el menú Herramientas, Simulación de flujo, seleccione Herramientas, Exportar resultados a simulación.

7.- Definir un estudio de simulación de SOLIDWORKS

En la pestaña Simulation, seleccionamos Nuevo Estudio.
Nombramos el estudio como Efectos del viento.
En la lista Tipo, seleccionamos el icono Estático.
Hacemos clic en Aceptar.
El árbol de estudio de simulación aparecerá en la parte inferior del FeatureManager.

estudio de simulación

8.- Aplicar las propiedades del material

Hacemos clic con el botón derecho en la carpeta Piezasen el gestor de simulación y seleccionamos Aplicar el material a todos los sólidos…

Debajo de la carpeta DIN Acero (estructural), seleccionamos 1.0044 (S275JR). Hacemos clic en Aplicar y Cerrar.

9.- Importar cargas desde SOLIDWORKS Flow Simulation.

Hacemos clic en el botón derecho en el estudio Efectos del viento en el gestor de simulación y seleccionamos Propiedades…

Hacemos clic en la pestaña Incluir efectos térmicos/de fluidos.

En el apartado Presiones desde un análisis de fluidos, hacemos clic en la casilla de verificación junto a Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation.
Hacemos clic en el botón situado a la derecha del campo en blanco, elegimos el archivo de resultados de SOLIDWORKS Flow Simulation y hacemos clic en Abrir.

Hacemos clic en Aceptar.

10.- Crear restricción fija.

Hacemos clic en el botón derecho en Sujeciones en el gestor de simulación y seleccionamos Geometría fija.
Seleccionamos la cara inferior de la placa de anclaje.
Hacemos clic en Aceptar.

geometría fija simulation

11.- Crear malla.

Hacemos clic con el botón derecho en Malla en el gestor de diseño y seleccionamos Crear malla.
Adoptamos la configuración que figura en la captura de pantalla.
Además, aplicamos controles de malla para el fuste del letrero.

mallas simulación

12.- Ejecutar el análisis.

Hacemos clic con el botón derecho en Efectos del viento en el gestor de simulación y seleccionamos Ejecutar.

13.- Ver el trazado de tensiones y desplazamientos.

Para ver los resultados, expandimos la carpeta Resultados y hacemos doble clic en Tensiones1 y en Desplazamietos1.

14.- Momento volcador

Ahora consultamos las fuerzas de reacción en la cara que hemos fijado de la placa de anclaje. Para ello, en el menú contextual de la carpeta Resultados, seleccionamos Enumerar fuerza resultante…

En el PropertyManager elegimos Fuerza de cuerpo libre, para así poder seleccionar un punto de referencia que nosotros hemos creado y nombrado como O, luego seleccionamos la cara fija de la placa.

Al pulsar el botón Actualizar obtenemos el momento de reacción Mz respecto al punto O, si ahora dividimos este valor por la distancia entre centros de gravedad de los pesos de lastre, obtendremos el par de vectores F equivalente.

15.- Conclusión.

Por tanto, para mantener el letrero en equilibrio para esta hipótesis de viento (40 m/s en dirección -X), el peso del lastre P tendrá que ser mayor o igual que F para evitar la componente ascendente.

«P ≥ F = Mz / d = 1,33 x 105 / 3,36 = 39.583 N» 

Luego, la masa en kilogramos del lastre para el extremo desfavorable tendrá que ser no menor de:

«P / g = M ≥ 3.958 kg»

Mejoras en el rendimiento de SOLIDWORKS Simulation.

Han sido muchas las mejoras y novedades introducidas en las nuevas versiones de SOLIDWORKS. En este post nos centraremos en lo relativo al aumento de rendimiento de SOLIDWORKS Simulation 2020, implementado para estudios estáticos lineales y optimizado para casos de carga múltiple, con esta actualización notaréis una sorprendente reducción de tiempo de solución total, os muestro la diferencia con un primer caso de estudio, se trata de la optimización topológica de una biela sometida a una serie de casos de carga:

El cálculo efectuado en SOLIDWORKS Simulation 2019 arroja un tiempo de solución total de 15 minutos 42 segundos.

Este mismo caso resuelto con SOLIDWORKS Simulation 2020 reporta los resultados con un tiempo de solución total de 10 minutos 47 segundos.

Esto supone una reducción de tiempo de aproximadamente un 30%.

SOLIDWORKS Simulation 2019

Rendimiento SOLIDWORKS Simulation

SOLIDWORKS Simulation 2020

Optimización Topológica 2020

Pero podréis notar reducciones mucho más espectaculares dependiendo del tipo de estudio, por ejemplo, resolviendo un estudio estático lineal para este amortiguador hemos pasado de un tiempo de solución total 7 minutos 18 segundos a nada menos que 1 minuto 41 segundos, esto supone una reducción en el tiempo de cálculo superior a un 70%, espectacular!

SOLIDWORKS Simulation 2019

Estudio estático lineal 2019

SOLIDWORKS Simulation 2020

Estudio estático lineal 2020

Como conclusión, podemos afirmar, sin lugar a dudas, que el rendimiento de SOLIDWORKS Simulation 2020 aportará una mejora significativa a vuestro flujo de trabajo, aumentando vuestra productividad.

Diferencias entre un ESTUDIO DE TENSIÓN TÉRMICA y un ESTUDIO TÉRMICO

Hoy vamos a analizar las posibilidades existentes en SOLIDWORKS Simulation a la hora de realizar análisis térmicos, centrándonos en los estudios de tensión térmica y los estudios térmicos.

estudio térmico

1.- En los estudios de tensión térmica, disponible en el paquete SOLIDWORKS Simulation Standard, podemos determinar las tensiones, deformaciones, desplazamientos y reacciones debidas a una carga térmica que nosotros introducimos en nuestro modelo como temperatura aplicada sobre una cara o sólido. Podríamos asignar diferentes temperaturas en distintas caras/sólidos.

Los resultados que reportan los estudios de tensión térmica son entre otros:

Tensiones de von Mises:

estudios de tensión térmica

Desplazamientos:

estudio térmico simulation

2.- Los Estudios Térmicos, disponible en el paquete SOLIDWORKS Simulation Professional, se ocupan de analizar la transferencia de calor en cuerpos sólidos y nos permiten calcular los flujos de calor, así como la distribución de temperaturas en nuestros modelos (gradientes de temperatura).

En los estudios Térmicos se analiza diferentes modos de transferencia de calor:

Conducción

conducción del calor simulation

Convección

convección simulación
convección natural

Radiación

radiación

Los resultados que reportan los Estudios Térmicos son entre otros:

Distribución de temperaturas:

distribución de temeraturas

Flujo de calor resultante:

flujo de calor

mejoras solidworks 2020

Mejoras en Simulación: SOLIDWORKS Simulation 2020

Seguimos con la serie de post sobre las mejoras que traerá SOLIDWORKS 2020, tanto en CAD como en Multiproduct. Estos son los otros posts:

Post 1: Mejoras en SOLIDWORKS CAD 202
Post 2: Mejoras en rendimiento en MULTIPRODUCT 2020
Post 3: Mejoras en gestión de datos: SOLIDWORKS PDM y Manage 2020
Post 5: Mejoras en documentación técnica: SOLIDWORKS Composer y Visualize

Ahora nos toca hablar de simulación.

Simulation

  • En cuanto a la interfaz de usuario, ahora podremos usar SHIFT + C para contraer el gestor y tener el control del Feature Manager de Simulation.
  • Evaluador de simulación: El evaluador de simulación comprueba la configuración de un estudio para determinar si es la idónea para obtener una simulación correcta.
    El Evaluador de simulación comprueba las condiciones relacionadas con la carpeta de resultados, la capacidad de almacenamiento de la unidad de resultados, los materiales utilizados en la simulación y el volumen de malla. Si las condiciones en el estudio impiden que la simulación se ejecute de modo satisfactorio, el cuadro de diálogo del Evaluador de simulación informa acerca de las medidas oportunas que se pueden tomar.
  • Eliminador de estudios sin cargar: en 2020 cualquier estudio puede ser borrado sin cargar resultados, ahorrando tiempo eliminando datos no deseados.
  • Cargas térmicas para vigas: Podrás aplicar cargas térmicas en juntas de viga y sólidos de viga. Después de ejecutar un análisis térmico en un modelo con vigas, se pueden importar las temperaturas a estudios estáticos lineales, estáticos no lineales, de frecuencia, de pandeo o dinámicos no lineales; para realizar análisis de tensión.
    ¿Cómo se hace?
mejoras SOLIDWORKS simulation 2020
  • Malla de alta calidad y de calidad mixta en borrador: Se ha mejorado la formulación de malla para estudios estáticos lineales, con lo que los elementos sólidos de alta calidad y de borrador pueden coexistir en la misma definición de malla. Se pueden seleccionar los sólidos que deseamos mallar mediante una malla de alta calidad o de borrador. La simulación se ejecuta con una definición de malla híbrida que tiene, al mismo tiempo, elementos de borrador y tetraédricos de alta calidad. La malla híbrida solo está disponible para estudios estáticos lineales con sólidos.
  • Conexión distribuida: La introducción del acoplamiento distribuido mejora la formulación de conectores de pasadores y pernos.

    Básicamente, el acoplamiento distribuido permite la deformación de caras asociadas a conectores de pasadores y pernos, con lo que el nivel de realismo de la representación del comportamiento del conector es mucho mayor. El acoplamiento distribuido para pasadores y pernos solo está disponible para los estudios estáticos lineales.

    Cuando se define un Tipo de conexión como Distribuida, una formulación de acoplamiento distribuido conecta un nodo de referencia (nodo de elemento de viga de un vástago de perno) a un grupo de nodos de acoplamiento dentro de las regiones de impresión de la cabeza y tuerca de un perno. El acoplamiento distribuido restringe el movimiento de los nodos de acoplamiento a la traslación y la rotación del nodo de referencia.
conexión de perno distribuida
  • Fuerzas de cuerpo libre para estudios no lineales: Para resultados más detallados, después de ejecutar un estudio estático no lineal o dinámico no lineal, se pueden indicar las fuerzas de cuerpo libre en entidades geométricas seleccionadas que se desea aplicar en cada paso de solución.

Plastics

  • Mejoras en mallas: se ha optimizado el flujo de trabajo de creación de malla
  • Condiciones de contorno basadas en geometría: En esta nueva versión se pueden asignar más condiciones de contorno a las entidades geométricas directamente que en versiones anteriores.

    Puedes aplicar estas condiciones de contorno en entidades geométricas, tales como:
    Injection Location
    Válvulas de control
    Temperatura de la pared del molde
    Fuerza de cierre
    Cara de simetría
    Insertar propiedades (antes, Insertar contorno)
    Respiraderos
    Excluir de deformación (Elemento canal de colada, en versiones anteriores).
    Canales calientes prellenados
    Entrada de refrigerante

Aunque la mayor parte de las condiciones de contorno están basadas en geometría, las siguientes siguen estando basadas en malla:

  1. Condiciones límites de deformación
  2. Factor de flujo de inyección
  3. Modificar espesor local

rendimiento solidworks 2020

Mejoras en Rendimiento SOLIDWORKS Multiproduct 2020

Seguimos con la serie de post sobre las mejoras que traerá SOLIDWORKS 2020, tanto en CAD como en Multiproduct. Estos son los otros posts:

Post 1: Mejoras en SOLIDWORKS CAD 2020
Post 3: Mejoras en gestión de datos: SOLIDWORKS PDM y Manage 2020
Post 4: Mejoras en Simulación: SOLIDWORKS Simulation 2020
Post 5: Mejoras en documentación técnica: SOLIDWORKS Composer y Visualize

En este post hablamos de rendimiento en las diferentes soluciones de SOLIDWORKS que no son CAD, a las que llamamos Multiproduct. También tenemos novedades que os pueden interesar.

Rendimiento

SOLIDWORKS PDM

  • SOLIDWORKS PDM carga los datos en segundo plano, lo cual mejora la receptividad de la navegación. Navegar por carpetas que tengan una gran cantidad de archivos resulta más rápido debido a que carga en segundo plano y la carga incremental de los datos.
  • El panel de tareas de SOLIDWORKS PDM se actualiza más rápido y los comandos en la barra de herramientas de PDM se habilitan correctamente en el panel de tareas al instante nada más seleccionar un archivo.
  • Puedes realizar las siguientes acciones de manera más rápida:
    • Iniciar sesión en el almacén al establecer una gran cantidad de archivos o carpetas para almacenar en caché automático.
    • Ver el historial del sistema de un almacén con un gran número de elementos.
    • Abrir un archivo desde una carpeta con una gran cantidad de archivos.
    • Crear un archivo o una subcarpeta nuevos en una carpeta con una gran cantidad de archivos.

Simulation

  • Casos de carga múltiple. Puedes utilizar una solución optimizada para cargas remotas rígidas y distribuidas.
  • Tetraédrico lineal/cuadrático. Puedes reemplazar elementos cuadráticos como elementos lineales en ciertas partes de la geometría (especialmente en áreas voluminosas con menos irregularidades de superficie) para aumentar la velocidad y el rendimiento del solver.

SOLIDWORKS Visualize

SOLIDWORKS Visualize es compatible con el modo de renderizado en directo, que utiliza de forma predeterminada. De este modo, se puede aumentar el rendimiento al tiempo que se reduce el consumo de memoria de los renderizados finales.

3DExperience

SOLIDWORKS 2020 ha mejorado la conectividad a la plataforma 3DEXPERIENCE (de diseño a fabricación) para permitirnos administrar fácilmente todo nuestro proceso de desarrollo. Hablemos de las mejoras específicas del flujo de trabajo:

  • Las herramientas de gestión de datos, proyectos y ciclo de vida en la plataforma 3DEXPERIENCE se conectan con el escritorio de SOLIDWORKS para administrar los diseños de productos y documentos directamente desde la aplicación de creación de escritorio.
  • 3D Sculptor es una nueva oferta de 3DEXPERIENCE para modelado por subdivisión (Sub-D) que permite un modelado dramáticamente más rápido de diseños de formas orgánicas y altamente estilizadas. 3D Sculptor se ejecuta en un navegador y está perfectamente integrado con las aplicaciones de escritorio de SOLIDWORKS.
  • Innovación empresarial es una colección de herramientas de colaboración que brindan a los usuarios la capacidad de crear paneles personalizados y comunidades sociales, una herramienta de visualización 3D y almacenamiento seguro para que sus equipos puedan compartir datos al instante, recopilar comentarios, iterar sobre diseños y tomar decisiones informadas más rápido.
  • Las mejoras en SOLIDWORKS PDMSOLIDWORKS Electrical connector y SOLIDWORKS PCB connector permiten un diseño electrónico completo y gestión de datos, incluido el almacenamiento seguro, la indexación y el control de versiones de todos sus datos, al tiempo que permiten una colaboración más estrecha entre los equipos de ECAD y MCAD.

ejemplo de simulación impacto

¿Sobrevivirá un televisor al impacto de un mando propulsado por la ira?

Seguro que algo de esto te hará sentirte identificad@. Esos momentos en los que estamos viendo un partido de nuestro equipo favorito o jugando a un videojuego o viendo el final de una serie muy molona…
Y de repente… la cosa se pone fea: tu equipo pierde por sorpresa, el juego falla o tu personaje favorito tiene un triste desenlace….

¿Sabes lo que suele suceder en esos casos? Si… que la ira se apodera de ti y, antes de ser consciente de la situación, el mando vuela por el salón rumbo al televisor. ¡Desastre!

Y a nosotros que nos gusta adelantarnos a lo que va a pasar con simulaciones, queremos hacer que el tiempo se detenga y hacer un análisis de simulación no lineal de lo que podría pasar 😀

Durante esta demo, te mostramos cómo impacta un mando en una tele y, más importante aún, conocerás cómo se pueden utilizar las herramientas de análisis para:

  • Personalizar las propiedades de los materiales
  • Conceptualizar y plantear problemas
  • Evaluar e interpretar los resultados
(Si no funciona el enlace, ábrelo en una nueva ventana de incógnito)

Te invitamos a ver simpático vídeo para averiguar lo que ocurre cuando la furia del jugador impacta de lleno en un televisor 4K.

Solicítanos un presupuesto y utiliza las herramientas de SOLIDWORKS Simulation para diseñar el próximo golpe.

calcular en simulation

Calcular cordones de soldadura con SOLIDWORKS Simulation – Parte 3

Vamos con el tercer post de esta serie de cómo calcular cordones de soldadura con SOLIDWORKS Simulation.

Los anteriores fueron: Parte 1 y Parte 2

EJERCICIO 3: UNIÓN DE CHAPAS POR SOLAPE – SOLDADURA EN ÁNGULO

Se trata de comprobar el cordón de soldadura en ángulo dispuesto entre una chapa base y un tubo rectangular de espesor 5 mm, la chapa base la fijaremos en el espacio y al tubo lo someteremos a una fuerza de tracción de 50 kN aplicados en el extremo libre.

Contamos con dos sólidos independientes, a los que hemos asignado un acero S275JR.

Como la pieza terminada tiene que ser una entidad de tipo superficie debemos transformarla, para ello hacemos uso del comando Equidistanciar superficie y definimos las superficies en las caras externas del tubo con valor de equidistancia igual a 0 mm.

Acto seguido eliminamos el sólido de este tubo para quedarnos únicamente con la superficie que representará la cara externa de sus paredes.

Para poder seleccionar correctamente las aristas que queremos soldar debemos partir las caras laterales del tubo, para ello croquizamos una línea en el plano de testa de la chapa base y a continuación utilizamos el comando Línea de partición.

Cumplida esta condición iniciamos nuestro estudio de tipo Análisis estático y le damos el nombre CORDONES LATERALES.

En el gestor de simulación, bajo la carpeta de Piezas vemos que el material se ha asignado a todos los componentes porque ya ha sido definido en el gestor de diseño, pero para la superficie no se ha definido todavía el espesor real del tubo.

Editamos su definición e ingresamos el valor de 5 mm. En equidistancia elegimos Superficie inferior para que el espesor vaya hacia el interior del tubo.

En la carpeta Conexiones agregamos entonces el conector de tipo Soldadura de arista… en este caso elegimos el tipo Redondeo, de un único lado.

A continuación, en el primer campo, seleccionamos la cara de la superficie que representa la pieza terminada y en el segundo campo, seleccionamos la cara de la otra chapa, la arista se selecciona automáticamente.

Elegimos el Estándar europeo y cubrimos el resto de los datos como figura en la captura.

Creamos otro cordón idéntico para el lado opuesto.

Editamos ahora el contacto global para evitar que las caras en contacto se unan rígidamente, elegimos el tipo Sin penetración.

Ahora asignamos una sujeción de tipo

Geometría fija… a la cara inferior de la chapa base.

El siguiente paso es aplicar una carga de tipo Fuerza… sobre la arista del extremo libre del tubo, esta fuerza valdrá 50 kN o 50.000 N y será de tracción.

Ahora mallamos el modelo con una malla basada en curvatura y con los valores predeterminados.

Ejecutamos ahora el estudio.

En el menú contextual de la carpeta Resultados elegimos Definir trazado de comprobación de soldadura.

Aceptamos el PropertyManager

Nos aparece una ventana que nos informa de que todos los conectores de soldadura cumplen, el espesor de garganta teórico sería 2 mm pero el mínimo constructivo es de 3 mm.

pieza soldada y simulation

Calcular cordones de soldadura con SOLIDWORKS Simulation – Parte 2

Seguimos con la serie de posts de «Calcular cordones de soldadura con SOLIDWORKS Simulation»

Parte 1 – Ahora vamos con la parte 2, el caso práctico a resolver es el siguiente:

EJERCICIO 2: UNIÓN DE TUBO A TOPE EN T – SOLDADURA EN ÁNGULO

Se trata de comprobar el cordón de soldadura en ángulo dispuesto entre una chapa base y un tubo circular, la chapa la fijaremos en el espacio y el tubo lo someteremos a una fuerza de tracción de 200 kN aplicados en el extremo libre.

Contamos con dos sólidos independientes, a los que hemos asignado un acero S275JR.

pieza soldada simulation

Como la primera entidad ha de ser siempre la pieza terminada, es decir, la que no es pasante, y tiene que ser además una entidad de tipo superficie debemos transformar la pieza terminada en una entidad de tipo superficie, para ello hacemos uso del comando Superficie media… acto seguido eliminamos el sólido de esta chapa para quedarnos únicamente con la superficie que representará la fibra neutra de dicha chapa.

solidworks comandos

Cumplida esta condición iniciamos nuestro estudio de tipo Análisis estático y le damos el nombre SIN CARTELAS.

En el gestor de simulación, bajo la carpeta de Piezas vemos que el material se ha asignado a todos los componentes porque ya ha sido definido en el gestor de diseño, pero para la superficie no se ha definido todavía el espesor real de la chapa.

Editamos su definición e ingresamos el valor de 5 mm.

En la carpeta Conexiones agregamos entonces el conector de tipo Soldadura de arista… en este caso elegimos el tipo Redondeo, de un único lado.

A continuación, en el primer campo, seleccionamos la cara de la superficie que representa la pieza terminada y en el segundo campo, seleccionamos la cara de la otra chapa, que en este caso la estamos tratando como un sólido. Se selecciona de forma automática la arista de intersección de estas dos entidades.

En Orientación de soldadura debemos asegurarnos de que la flecha radial de la zona de gráficos apunte hacia fuera, esta flecha indica el lado por donde discurre el cordón.

estandar europeoAhora, elegimos qué normativa vamos a emplear para efectuar la comprobación y/o dimensionado del cordón, en este caso vamos a emplear el Estándar europeo que se basa en el Eurocódigo EC3.

Completamos el resto de los valores.

Como la pieza más delgada a unir tiene un espesor de 5 mm, el tamaño mínimo de espesor de garganta tendrá que ser de 3 mm, por otro lado, el tamaño máximo será 0,7 x 5 = 3,5 mm, nosotros escogemos 3 mm como tamaño estimado.

Ahora asignamos una sujeción de tipo Geometría fija… a la cara inferior de la chapa base.

El siguiente paso es aplicar una carga de tipo Fuerza… sobre la arista superior del tubo, esta fuerza valdrá 200 kN o 200.000 N y será de tracción.

Ahora mallamos el modelo con una malla basada en curvatura y con los valores predeterminados.

Nos aparece una ventana que nos alerta de que hay un conector de soldadura que no cumple, si lo seleccionamos en la lista, en la zona de gráficos nos informa del tamaño de soldadura necesario con valor 3,7 mm.

El problema es que no podemos utilizar un cordón de más de 3,5 mm de espesor. Una solución es disponer cartelas para agregar más cordón de soldadura.

Creamos entonces una nueva configuración a la que llamamos CON CARTELAS en la que modelamos una matriz de 8 superficies con esta geometría y dimensiones.

En lugar de iniciar un nuevo estudio, lo que haremos será copiar el existente ejecutando el comando Copiar estudio del menú contextual que aparece al clicar con el botón derecho del ratón en la pestaña del estudio SIN CARTELAS.

En el PropertyManager le damos al nuevo estudio el nombre CON CARTELAS y nos aseguramos de seleccionar la configuración correcta, esto es, CON CARTELAS.

De este modo ya tenemos todo definido excepto los espesores y las soldaduras de las nuevas piezas.

Editamos las nuevas superficies para asignarles el grosor de 5 mm.

solidworks simulation

Para soldar las cartelas empleamos el tipo de soldadura Redondeo, de doble lado para todas las aristas con los siguientes datos, la cartela siempre debe seleccionarse primero porque es la pieza terminada.

Ejecutamos este nuevo estudio y observamos que ahora sí cumplen las soldaduras.

calcular cordones de pieza soldada

Calcular cordones de soldadura con SOLIDWORKS Simulation – Parte 1

Este es el primero de una serie de posts en los que os enseñaré cómo calcular cordones de soldadura con SOLIDWORKS Simulation para los tipos de unión señalados en el siguiente cuadro a través de 4 ejercicios básicos.

solidworks pieza soldada

EJERCICIO 1: UNIÓN DE CHAPA A TOPE EN T – SOLDADURA EN ÁNGULO

Se trata de comprobar los cordones de soldadura en ángulo dispuestos entre estas dos chapas, la chapa horizontal la fijaremos en el espacio y la vertical la someteremos a una fuerza de tracción de 200 kN aplicados en el extremo libre, ambas chapas tienen un espesor de 10 mm

Contamos con dos sólidos independientes, a los que hemos asignado un acero S275JR.

pieza soldada

Cuando definamos los conectores de Soldadura de arista en SOLIDWORKS Simulation debemos seleccionar dos entidades a conectar, la primera entidad ha de ser siempre la pieza terminada, es decir, la que no es pasante, y tiene que ser además una entidad de tipo superficie que mallaremos con elementos finitos de vaciado. La segunda entidad puede ser tanto una entidad de tipo superficie o un sólido.

Dicho esto, debemos transformar la pieza terminada en una entidad de tipo superficie, para ello hacemos uso por ejemplo del comando Superficie media… acto seguido eliminamos el sólido de esta chapa para quedarnos únicamente con la superficie que representará la fibra neutra de dicha chapa.

tipo superficie solidworks

Cumplida esta condición iniciamos nuestro estudio de tipo Análisis estático y le damos el nombre por ejemplo SOLDADURA.

simulation

En el gestor de simulación, bajo la carpeta de Piezas vemos que el material se ha asignado a todos los componentes porque ya ha sido definido en el gestor de diseño, pero para la superficie no se ha definido todavía el espesor real de la chapa.

En la carpeta Conexiones agregamos entonces el conector de tipo Soldadura de arista… en este caso elegimos el tipo Redondeo, de doble lado.

  

A continuación, en el primer campo, seleccionamos la cara de la superficie que representa la pieza terminada y en el segundo campo, seleccionamos la cara de la otra chapa, que en este caso la estamos tratando como un sólido. Se selecciona de forma automática la arista de intersección de estas dos entidades.

solidworks arista

Ahora, elegimos qué normativa vamos a emplear para efectuar la comprobación y/o dimensionado del cordón, en este caso vamos a emplear el Estándar europeo que se basa en el Eurocódigo EC3.

Para esta norma:

resistencia a tracción solidworks

Además, hay unos mínimos constructivos que también hay que cumplir.

Con esta información completamos el PropertyManager del conector.

Como la chapa más delgada tiene un espesor de 10 mm y el acero empleado es un S275JR la resistencia a tracción vale 430 N/mm2.

El factor de correlación, por tratarse de un acero S275JR, vale 0,85

El factor de seguridad para calcular la resistencia de las uniones es siempre 1,25.

Como la chapa más delgada a unir tiene un espesor de 10 mm, el tamaño mínimo de espesor de garganta tendrá que ser de 3 mm, por otro lado, el tamaño máximo será 0,7 x 10 = 7 mm, nosotros escogemos 5 mm como tamaño estimado.

Ahora asignamos una sujeción de tipo Geometría fija… a la cara inferior de la chapa horizontal.

El siguiente paso es aplicar una carga de tipo Fuerza… sobre la arista superior de la chapa vertical, esta fuerza valdrá 200 kN o 200.000 N y será de tracción.

Ahora mallamos el modelo con una malla basada en curvatura y con los valores predeterminados.

Ejcutamos el estudio.

En el menú contextual de la carpeta Resultados elegimos Definir trazado de comprobación de soldadura.

Aceptamos el PropertyManager

Nos aparece una ventana que nos alerta de que hay un conector de soldadura que no cumple, si lo seleccionamos en la lista, en la zona de gráficos nos informa del tamaño de soldadura necesario con valor 6,2 mm.

Si pulsamos el botón Detalles… se abre el siguiente PropertyManager, en el cuadro superior se muestran las fuerzas resultantes en la arista por unidad de longitud.

Y en el cuadro inferior se muestran las tensiones normales y tangenciales de la garganta de soldadura, estos valores se refieren al cordón optimizado, esto es, para un espesor de garganta a = 6,2 mm

Tienen que cumplirse las siguientes condiciones:

estudio de topología

Descarga Gratis: hoja técnica optimización de la topología

Hoy os traemos una descarga gratuita para mejorar el diseño de productos y automatizar la capacidad de fabricación gracias a la optimización topológica.

Hoy en día, la disponibilidad de nuevas tecnologías de fabricación, junto con la demanda de un desarrollo de productos más automatizado, innovador y con un mejor rendimiento, supone a la vez desafíos y oportunidades para los diseñadores de productos.

Encargados de proporcionar unos diseños iniciales con la máxima fidelidad para minimizar los retrasos y los costes adicionales asociados con el rendimiento al final del ciclo, así como los problemas relacionados con la viabilidad de fabricación, los diseñadores se enfrentan a retos cada vez mayores a la hora de comprender mejor el comportamiento de sus diseños y de evaluar el enfoque de fabricación más
adecuado para los mismos.

Por suerte, las herramientas de optimización de la topología integradas en CAD, como las que se incluyen en el software de análisis SOLIDWORKS Simulation Professional y SOLIDWORKS Simulation Premium, ponen a su alcance una tecnología transformadora para ayudarle a crear rápida y fácilmente la forma optimizada de un diseño según los requisitos de su entorno operativo y de la técnica de producción empleada.

Al ser capaces de realizar estudios de topología rápidamente, los diseñadores pueden crear la forma óptima de un diseño automáticamente, por lo que se benefician de las nuevas técnicas de fabricación y, en última instancia, satisfacen la demanda de un desarrollo de productos más automatizado, innovador y con un mejor rendimiento.

simulación

WEBINAR: cordones de soldadura con SOLIDWORKS Simulation

WEBINAR: Cómo calcular cordones de soldadura con SOLIDWORKS Simulation

GRACIAS A NUESTROS CLIENTES
Si eres cliente con mantenimiento activo, ya sabes que tienes a tu disposición a nuestro equipo de soporte técnico para llamarles siempre que lo necesites. Estamos atentos a las preguntas que nos hacéis e intentamos resolverlas lo más rápido posible.
Muchas gracias a nuestros clientes que nos mandan sus preguntas.

Hoy he creado esta webinar respondiendo a una demanda de un cliente que quizás sea de utilidad para vosotros también.

La pregunta es:
«¿Es posible dimensionar cordones de soldadura en SOLIDWORKS Simulation?»
Para ello os enseñaré cómo calcular cordones de soldadura para distintos tipos de unión.

Espero que os guste o no dejéis de mandarnos vuestras consultas a soporte@easyworks.es

¿Qué estás buscando?
Filtrar por fecha
WhatsApp
Hola! ¿En qué podemos ayudarte?
Powered by

Utilizamos cookies para mejorar la experiencia de usuario en nuestra web Política de Privacidad

Los ajustes de cookies de esta web están configurados para "permitir cookies" y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en "Aceptar" estarás dando tu consentimiento a esto.

Cerrar