fbpx
Compatibilidad con 3DEXPERIENCE Cloud Eligibility

Compatibilidad con 3DEXPERIENCE: Cloud Eligibility

Pensando en implantar 3DEXPERIENCE puede que te preocupe su compatibilidad con los recursos de tu empresa o si las soluciones en la nube se adaptan a tus necesidades. Hoy queremos enseñarte una herramienta que Dassault Systèmes pone a tu disposición para ayudarte en este sentido.

Cloud Eligibility es la herramienta te ayudará a comprobar la compatibilidad de tu empresa y entorno con la plataforma 3DEXPERIENCE. Para usarla, debes ejecutarla en Windows y tener acceso a Internet. Puedes usar la herramienta en este enlace. Es muy sencillo, te explicamos ahora mismo cómo hacerlo.

Primero, haz clic en el botón que pone «Test your compatibility». Te llevará a una página de 3DEXPERIENCE en la que deberás loguearte. Si no tienes usuario, puedes crearlo de forma completamente gratuita.
 

Compatibilidad con 3DEXPERIENCE: Cloud Eligibility

Al momento se descargará un programa. Al ejecutarlo, como es habitual, deberás leer y aceptar sus condiciones y términos. que te pedirá tu aprobación «Leer y aceptar términos». Verás como se abre una aplicación que te indica que está analizando tu sistema. En menos de un minuto se abrirá una pestaña en tu navegador predeterminado con tu informe personalizado. Si lo requieres, podrás descargártelo desde el siguiente botón:

Compatibilidad con 3DEXPERIENCE: Cloud Eligibility

Esta es una forma un poco autodidacta de analizar tu compatibilidad con 3DEXPERIENCE. Pero si quieres puedes hablar con nosotros y vemos tu caso personalmente. Escríbenos a comercial@easyworks.es si estás pensando en implantar 3DEXPERIENCE y te diremos todo lo que tienes que tener en cuenta 🙂

SOLIDWORKS CONNECTED SIMULATION

SOLIDWORKS Connected ya ejecuta Simulation

A partir de la nueva versión de 2024 (R2024x FD01, disponible desde el pasado 11 de febrero), SOLIDWORKS Connected ya ejecuta SOLIDWORKS Simulation (Standard, Professional o Premium) y SOLIDWORKS Motion. Una muy buena noticia para los usuarios de 3DEXPERIENCE SOLIDWORKS, que podrán disfrutar de éstas potentes herramientas.

¿Qué tipo de licencia de SOLIDWORKS Simulation es compatible?

  • Licencia SolidNetWork (SNL)
  • Standalone

Asimismo, te dejamos un pequeño paso por paso para aprender como ejecutar SIMULATION con tu 3DEXPERIENCE SOLIDWORKS (en cualquiera de sus versiones Standard, Professional o Premium) paso por paso:

1. Después de instalar o actualizar SOLIDWORKS Connected a R2024x FD01, especifica los números de serie en la aplicación Añadir licencias de SOLIDWORKS Desktop. Esta opción está disponible en el directorio de instalación de SOLIDWORKS Connected.

2. Accede a <SOLIDWORKS Connected installation directory>\setup\i386

3. Clic en addsswxlicenses.exe.

SOLIDWORKS CONNECTED SIMULATION

4. En la aplicación, introduce el número de serie de SOLIDWORKS Simulation o el número de serie de SOLIDWORKS Motion. En caso de que sea una licencia de red, introduce también el port@server para el servidor de licencias.

5. Clicamos en ok

SOLIDWORKS CONNECTED SIMULATION

6. Los complementos de SIMULATION se cargarán la próxima vez que inicies SOLIDWORKS Connected. Sigue las instrucciones para activar los números de serie. Puedes desactivar las licencias en SOLIDWORKS Connected desde Ayuda > Licencias > Desactivar.

Importante: Si el administrador ha asignado la función 3DEXPERIENCE Simulation Designer a un usuario, ésta anulará cualquier licencia de Simulación de escritorio de SOLIDWORKS que haya añadido. Si tienes la intención de utilizar la licencia de simulación de SOLIDWORKS, tu administrador no debe asignar la función 3DEXPERIENCE Simulation Designer a un usuario.

Novedades SOLIDWORKS 2024: ¡Vuelven las EASYTALKS!

Un año más llega nuestro evento de novedades de SOLIDWORKS 2024. En una nueva edición de las Easytalks queremos compartir una mañana contigo para charlar sobre las diferentes mejoras que ha implementado SOLIDWORKS para seguir siendo un aliado clave de la industria del diseño.

Nos reuniremos en el Museo del Mar, el 23 de noviembre, de 10.00 a 14.00 horas. Algunos de los puntos clave que abordaremos durante esta jornada son:

  • Novedades SOLIDWORKS 2024: mejoras e implementaciones del software CAD 3D. Un minucioso análisis por parte de nuestro equipo técnico en áreas como rendimiento, interfaz o usabilidad.
  • Servicios en la nube ya integrados en las licencias de SOLIDWORKS a través de la plataforma de negocio 3DEXPERIENCE. Qué esperar de ellos y cómo sacarles partido.
  • Últimas tendencias en software de simulación de Dassault Systèmes como la gama SIMULIA, basada en la tecnología ABAQUS.
  • La visión de un experto como André Freitas, Partner Success Manager de Dassault Systèmes para España, que participará en el acto.

Además, realizaremos un descanso a media mañana con un picoteo para que puedas charlar con calma no solo con nuestro equipo sino con diferentes profesionales del sector industrial.

Hemos preparado un espacio especial en nuestra web para este acto y a medida que se acerque la fecha, concretaremos con precisión en él los temas del programa. Puedes consultarlo aquí. Igualmente, si quieres inscribirte, puedes hacerlo cubriendo el formulario que encontrarás un poco más abajo. Recuerda:

  • Fecha: 23 noviembre 2023
  • Hora: 10.00 – 14.00
  • Lugar: Museo del Mar (Avenida Atlantida 160, 36208, Vigo)

¡No dudes en invitar a cualquier profesional al que creas que puede interesarle! Te esperamos el día 23 de noviembre. ¡Un abrazo!

Vídeo: estudio de simulación con SIMULIA Structural Engineer

Os traemos un estudio de simulación en formato vídeo utilizando la herramienta SIMULIA Structural Engineer, basada en la tecnología ABAQUS. Nuestro equipo técnico profundizaen cómo esta solución de simulación integral de análisis estructural lineal puede ayudaros a evaluar el rendimiento de vuestros productos en las fases de diseño.

En el desarrollo de productos nos encontramos con que cada vez tenemos que hacerlos de mayor calidad, aplicando más innovación y con unos plazos de entrega mucho más cortos. Desde Easyworks entendemos esta herramienta ayuda enormemente a alcanzar estos objetivos y por eso hemos preparado este vídeo demostrativo de cómo hacer un estudio de simulación con SIMULIA Structural Engineer

Este software está perfectamente conectado con SOLIDWORKS mediante el sistema de PLM de la plataforma 3DEXPERIENCE. PLM ya incluido en todas las licencias de SOLIDWORKS desde el 1 de julio. Sin alargarnos más, te dejamos un formulario que puedes cubrir para acceder al estudio de simulación en formato vídeo:

Puedes ampliar más información sobre ésta u otras soluciones de simulación en esta misma web. Además, si quieres aprender cómo simular, disponemos de diferentes cursos en nuestra plataforma de formación online.

Si tienes cualquier duda o cuestión sobre cómo esta solución puede mejorar la productividad de tu empresa o departamento, escríbenos a comercial@easyworks.es. ¡Estaremos encantados de atenderte!

Simulación estática lineal con SOLIDWORKS Premium

SOLIDWORKS Premium ofrece la posibilidad de testear un modelo mediante un análisis estático gracias a la simulación estática lineal.

Muchas veces surge la necesidad de probar nuestro modelo antes de sacarlo al mercado. En muchos caso, esto implicaría, por ejemplo, el desarrollo de prototipos lo que agregaría altos costes en tiempo y dinero, además de alargar la salida al mercado del producto. Esta casuística se puede ver resuelta con facilidad utilizando la Simulación estática lineal que trae incluida la licencia Premium de SOLIDWORKS CAD.

La opción de la simulación estática lineal también la encontramos dentro de la 3DEXPERIENCE en el rol de 3DEXPERIENCE SOLIDWORKS Simulation Designer, el cual es complementario al rol principal que aporta SOLIDWORS Connected.

La simulación estática lineal permite a los diseñadores, de manera eficiente y rápida, validar la calidad, el rendimiento y la seguridad del modelo que se está desarrollando, sin necesidad de salirse del entorno de diseño.

La Simulación estática lineal se basa en los siguientes principios:

  • Se supone que el material es lineal. Esto se traduce en que la tensión es lineal respecto a la deformación. Si se usa este tipo de modelo lineal, la máxima tensión que puede soportar el material no se limita a la última tensión del material. La fluencia del material no está contemplada en la simulación lineal, si no en la simulación no lineal disponible en SOLIDWORKS Simulation Premium.
  • Las deformaciones estructurales son pequeñas. El significado de esto reside en que la Simulación estática trabaja bajo la condición de que las deformaciones sean “pequeñas”, que no afecten a la rigidez del material. En la realidad la deformación de un material bajo la acción de una carga hace que la rigidez del material se vea afectada.
  • Las cargas son estáticas. La Simulación lineal supone que las cargas no cambian durante el tiempo.

La perfecta integración entre el diseño CAD y la simulación permite que, una vez se define el estudio de simulación, cualquier cambio en la pieza se verá reflejada en la simulación y únicamente habrá que ejecutarse el estudio de nuevo para ver como se comportan los nuevos cambios.

A continuación un ejemplo de como sería una simulación utilizando la simulación estática que aporta la licencia de SOLIDWORKS Premium.

1º Definición del caso a estudiar (Cargas, sujeciones, materiales…)

Simulación estática lineal: definición del caso a estudiar (Cargas, sujeciones, materiales...)

2º Definición y creación de mallado (Malla tipo sólido, shell y tipo viga) 

Simulación estática lineal: definición y creación de mallado (Malla tipo sólido, shell y tipo viga) 

3º Ejecución y evaluación de los resultados

Simulación estática lineal: ejecución y evaluación de los resultados

Beneficios de la Simulación

Reducir los beneficios de la simulación a olvidarse de prototipados o a que los diseñadores no necesiten salir del entorno de diseño sería quedarme corto. Por ello, os dejo un breve resumen de todos las ventajas que conlleva la simulación estructural:

  • Conocimiento del comportamiento mecánico del producto.
  • Optimización de la geometría.
  • Optimización del material utilizado.
  • Obtención de piezas con mejor comportamiento en uso.
  • Reducción de las iteraciones de modificaciones geométricas de moldes.
  • Reducción del número de prototipos fabricados en la fase de diseño.
  • Ahorro económico.
  • Se acorta el proceso de desarrollo-salida al mercado del producto o servicio.

Hasta aquí el post de hoy. Espero que os haya sido de ayuda. Recordad que si queréis empezar a trabajar con SOLIDWORKS Simulation, pero os veis perdidos, en Easyworks disponemos de formaciones con las aprender a manejar esta herramienta.

Los mejores cursos de SOLIDWORKS Simulation

Tenemos un nuevo curso que se llama Máster «Experto en Simulación con SOLIDWORKS», que reúne todos los conocimientos de nuestra plataforma sobre simulación. A continuación, os muestro todos los cursos que tenemos disponibles.

Para estos cursos es necesario que utilices licencia de SOLIDWORKS Simulation Professional o Premium

El máster está pensado para los alumnos que quieren hacer todos los cursos de simulación más rápido y por menos coste. Incluye los cursos básicos y expertos y la certificación oficial, CSWA-Sim.

Es un curso práctico y con una cobertura en profundidad sobre los aspectos básicos del análisis de elementos finitos (FEA/FEM), frecuencia, pandeo, fatiga, caída, térmico y optimización paramétrica.

El curso que toda persona que trabaje con simulaciones debe tener.

Aprenderás simulación o validación de diseño basada en la técnica numérica Análisis por el Método de los Elementos Finitos (FEM).

Para profundizar en temas de simulación, en este curso se aprende a realizar análisis modal, análisis de frecuencia con y sin sujeciones y también con cargas.

Aprenderás análisis de pandeo y análisis de fatiga, pudiendo predecir la durabilidad de nuestros diseños y productos frente a cargas repetitivas.

Este curso avanzado de simulación, se aprende a analizar el comportamiento estructural de los ensamblajes y piezas de SOLIDWORKS en situaciones de prueba de caída, cuando los modelos se someten a diversas cargas térmicas y en diversos escenarios utilizando estudios de optimización paramétrica.

Descarga gratis: Simulación de mejor equipamiento industrial

Hoy hablamos de innovación y validación para lograr un mejor diseño de nuestro equipamiento industrial

En este ebook, que te puedes descargar a continuación, podrás conocer algunas ideas para aumentar la velocidad del ciclo y facilitar la especialización con el desarrollo basado en la simulación.

La especialización se ha convertido en un factor fundamental en el mercado del equipamiento industrial actual, que se segmenta con gran rapidez. Para mantener el ritmo, los fabricantes están buscando formas de acortar los ciclos de desarrollo y, al mismo tiempo, incrementar la calidad y la innovación. Al adoptar las herramientas de simulación, los fabricantes de equipamiento industrial pueden investigar, validar y optimizar los diseños y los procesos de producción con mayor rapidez y a un coste inferior.

En este eBook, «Simulación de mejor equipamiento industrial», se analizan los retos y las oportunidades a los que se enfrentan las empresas en este mercado y se muestra cómo el diseño basado en la simulación puede ayudar a: 

  • Minimizar la creación de prototipos físicos para reducir los costes y la duración del ciclo
  • Identificar posibles fallos de campo y problemas de garantía
  • Optimizar el rendimiento del diseño y mejorar la calidad
  • Validar el rendimiento del diseño y los procesos de producción
  • Reducir el tiempo de comercialización

¡Esperamos que te guste!

Tipos de ficheros que se crean en una Simulación con SOLIDWORKS

los resultados de un estudio están contenidos en un archivo con la extensión CWR. Otra información como propiedades del estudio, materiales, restricciones, cargas y condiciones de contacto se guarda en el documento de pieza o ensamblaje de SOLIDWORKS.

El solver crea muchos archivos durante un análisis. Algunos de ellos son archivos temporales que se eliminan automáticamente cuando se completa el análisis, otros son archivos de resultados que deben reunirse y guardarse en el archivo CWR antes de eliminarse cuando se cierra el modelo.

En caso de terminación abrupta del solver o de SOLIDWORKS, la eliminación de los archivos no se llevará a cabo, dejando muchos archivos innecesarios. Se pueden eliminar manualmente, ya que solo se requiere el archivo CWR para acceder a la malla y los resultados.

tipo de fichero

Archivos de base de datos y su descripción
Tipo de archivoDescripción
.GENEste es el archivo de información general que contiene toda la información sobre la base de datos FEM. Normalmente, contendría la información del sistema de coordenadas, información sobre nodos y elementos (información de malla), grupos de elementos, conjuntos de constantes reales, conjuntos de propiedades de materiales, etc. Esto es como un archivo de entrada para los módulos de análisis. Tenga en cuenta que incluso si elimina el archivo .GEN, tendrá todas las propiedades del material, cargas /condiciones de contorno, información de control de malla (esta información se almacena como atributos de terceros en la base de datos del archivo de pieza / ensamblaje de SOLIDWORKS) intacta en su estudio, pero sus datos de malla se perderán.
.MASEste es un archivo de MS Access que contiene información sobre toda la base de datos. Esto también se conoce como archivo maestro.
.OUTEste es un archivo de texto que contiene la información del solver, como desplazamientos resumidos, tensiones, estimación del error total de energía (TEE), etc. Puede abrir este archivo en el Bloc de notas y leer su contenido.
.TEMEste es un archivo de texto que contiene información de análisis térmico y un resumen de los resultados térmicos. Puede abrir este archivo en el Bloc de notas y leer su contenido. Este archivo es el equivalente al archivo .OUT para análisis térmico.
.HTOEste archivo contiene temperaturas nodales
.LCD, .LCN, .LCP, .LCMEstos archivos contienen los resultados de los desplazamientos.
.IDAEste es un archivo binario que contiene el número de ecuación para cada grado de libertad.
.LDSEste es un archivo binario que PRE1 (módulo de pre-análisis) prepara, que contiene información de carga.
.STE, .STNEste archivo contiene todas las tensiones de elementos y nodales (STE para análisis lineales y STN para análisis no lineales)
.FTREste es un archivo binario que contiene resultados de fatiga
.STPEste es un archivo binario que contiene información de tensión de prueba de caída para publicación.
.GCFEste es un archivo binario que contiene información de contacto para publicar.
.ELFEste es un archivo binario que contiene fuerzas de elementos
.EFFEste es un archivo binario que contiene fuerzas de elementos para el cálculo de la fuerza de reacción.
.CNTEste archivo contiene la información de la fuerza de contacto, las fuerzas remotas (en la superficie de la interfaz) y las fuerzas de pasador y perno
.NP1Este es un archivo binario que contiene información plástica elemental (y otros tipos de modelos de materiales no lineales) para No Lineal
.NP2Este es un archivo binario que contiene información plástica elemental (y otros tipos de modelos de materiales no lineales) para No Lineal
.MSFEste es un archivo binario que contiene información de análisis de frecuencia necesaria para el análisis dinámico
.EIGEste es un archivo binario que contiene funciones propias (valores y vectores)
.DSPEste es un archivo binario preparado por PRE1 que contiene los desplazamientos prescritos
.CVCEste es un archivo binario que contiene información posterior a la curva
.EG2Este es un archivo binario que contiene información del grupo de elementos anterior para el método adaptativo-h
.BDFEste es un archivo interno generado por un modelo principal (tenga en cuenta que todos los modelos, siempre que no sean submodelos, son modelos principales potenciales), que almacena la información de vinculación. Cuando se crea un submodelo después de que el modelo principal haya realizado la simulación, leerá los datos del archivo BDF de su padre para reconstruir las condiciones de límite de corte.
.RSLEste es un archivo binario que contiene la información del resultado del solver FFEPlus
.PCEEste es un archivo de texto que contiene cualquier error encontrado por los solvers PCGLSS (LPDS y FFEPlus). Puede abrir este archivo en el Bloc de notas y leer su contenido.

Además de los archivos mencionados anteriormente, se pueden crear algunos archivos temporales durante la fase de mallado y resolución en el directorio de trabajo o en el directorio temporal y deben eliminarse automáticamente una vez que se complete el proceso.

Descarga gratis: Simulación, el diseño mediante el análisis

Hoy en día, los diseñadores de productos se enfrentan a una gran presión para crear productos más innovadores y diseños más rápidos, más rentables y con mayor precisión que nunca.

Las demandas de una mayor innovación, automatización y rendimiento, así como las exigencias por obtener diseños más completos, en menos tiempo y con menos cambios de fabricación de última hora, marcan el día a día de los diseñadores.

La solución a este problema está en las herramientas automatizadas de análisis y simulación de diseño. Herramientas fáciles de usar y estén integradas, como las que se incluyen con el software de SOLIDWORKS® Simulation.

En el descargable encontrarás un análisis de las crecientes exigencias a las que se enfrentan los diseñadores para ofrecer diseños más sólidos durante las primeras fases del proceso y cómo las funciones de simulación integradas pueden ayudarles a impulsar el proceso de creación de diseño para lograr ese objetivo.

Hablaremos de:

  • Herramientas de diseño: Más allá de modelar o dibujar
  • ¿Por qué los diseñadores deben comprender mejor el comportamiento del diseño en el mundo real?
    1. Demandas de innovación
    2. Demandas de seguridad
    3. Demandas de reducciones de costes
    4. Demandas estéticas
    5. Demandas de rendimiento mejorado
    6. Demandas del diseño para aumentar la viabilidad de fabricación
    7. Demandas de diseño simultáneo
    8. Generación de ideas
    9. Refinamiento del diseño
    10. Considerar otras opciones de diseño
    11. Ir más allá del factor seguridad
    12. Comparar materiales alternativos
    13. Evaluar métodos de producción
    14. Ofrecer mayor fidelidad de diseño
  • Un buen ejemplo: impulsar una empresa de tecnología de control de movimiento de precisión – Akribis Systems
  • ¿Qué tipo de herramientas de simulación necesitan los diseñadores?
    1. Diseño de componentes
    2. Tensión estática lineal ¿se romperá?
    3. Desviación/desplazamiento ¿es lo suficientemente rígida?
    4. Fatiga ¿cuándo fallará?
    5. Diseño de ensamblajes
    6. Movimiento/cinemática ¿cómo se moverá?
    7. Análisis de tensión ¿cuáles son las cargas dinámicas?
    8. Optimización topológica: encontrar la forma óptima
  • Un buen ejemplo: llevar el desarrollo de impresoras 3D al siguiente nivel – Ultimaker
  • Incorpore fácilmente el diseño basado en la simulación con SOLIDWORKS SIMULATION
  • Un buen ejemplo: automatización del desarrollo de sistemas de revestimiento de molinos – Russel Mineral Equipment
  • Obtener respuestas de forma más rápida y asequible con las pruebas virtuales

Descargar ebook

¿Te quedas con ganas de más Simulation? Fórmate ahora

simulationxpress

Descarga gratis informe técnico: las simulaciones precisas de llenado de moldes

Los fabricantes de productos de piezas moldeadas por inyección pueden resolver los problemas relacionados con el diseño y las herramientas realizando simulaciones precisas de llenado de moldes mediante el software SOLIDWORKS® Plastics.

En lugar de basarse en las laboriosas y costosas iteraciones de prototipos y herramientas para mejorar la fabricación, los profesionales del moldeado por inyección pueden utilizar esta solución para reducir el tiempo y los costes del proceso y, al mismo tiempo, mejorar la calidad.

Para demostrar la precisión de las simulaciones de SOLIDWORKS Plastics y validar la viabilidad de la aplicación para acelerar el diseño y la producción de piezas moldeadas por inyección, Dassault Systèmes inició un proyecto con la Universidad de Massachusetts Lowell, uno de los principales centros de investigación de ingeniería de plásticos del mundo, para comparar la predicciones de la simulación del llenado de moldes con los resultados de pruebas
físicas reales.

Este ebook examina los resultados del proyecto, que validan cómo las simulaciones precisas del llenado de moldes de SOLIDWORKS Plastics pueden simplificar el desarrollo de herramientas y piezas moldeadas por inyección.

Descarga ebook gratis

Optimización topológica de una hélice

Hoy os traigo un post en el que os muestro cómo he realizado la optimización topológica de una hélice con las herramientas de SOLIDWORKS. Espero que te sea ilustrativo y se entienda, si no, no dudes en escribirme un comentario.

El objetivo de este estudio es reducir el peso de una hélice de seis palas fabricada en acero AISI 316L. Aprovechando las ventajas de la fabricación aditiva (impresión 3D) planteamos la supresión de material únicamente en el núcleo de las palas y por medio de un estudio topológico sabremos en qué regiones de dichas palas podremos realizar dicha sustracción.

En el siguiente documento podrás leer todos los pasos que he seguido para el estudio topológico.

Como ya sabes, en Easyworks realizamos servicios de simulación y de optimización topológica. Si necesitas ayuda en tu empresa con alguna simulación, contacta con nosotros en comercial@easyworks.es

15 Novedades en SOLIDWORKS Simulation 2021

¡Ya hemos acabado las EasyTalks! Otro año más que se pasan rápido porque lo hemos pasado tan bien 🙂 Os dejo los resúmenes de los dos primeros días y a continuación os cuento las novedades de las que hablamos hoy. Este post será sobre Simulación y el siguiente sobre Visualización de producto.

Ver 3º día de las EasyTalks – Simulación y Visualización

Novedades Simulación 2021

  • Actualizaciones de terminología para SOLIDWORKS Simulation
    Los términos de la interfaz de usuario relacionados con el contacto y la malla se actualizan para que coincidan con la terminología convencional del sector. El término interacción se introduce para describir el tipo de comportamiento entre los componentes durante una simulación (unión rígida, contacto o libre).

La detección de contactos se mejora con un algoritmo de estabilización de contacto que puede resolver condiciones con restricciones insuficientes. La estabilización de contacto actúa como un estabilizador numérico al añadir una pequeña rigidez a las áreas cualificadas antes de que entren en contacto.

Ventaja: Lograrás una mejor convergencia para el contacto.

  • Configuración de interacción predeterminada sólida
    Las simulaciones que tienen definiciones de unión rígida y de contacto son más sólidas, incluso para modelos con geometrías ligeramente imperfectas. Se han mejorado los algoritmos que detectan las distancias entre las geometrías y aplican las interacciones adecuadas, y también se han simplificado las selecciones de la interfaz de usuario.

La precisión de los resultados de los estudios estáticos, de frecuencia y de pandeo se ha mejorado para las geometrías que experimentan interacciones de unión rígida. Los algoritmos mejorados que mallan los sólidos de forma independiente impulsan esta mejora.

Las simulaciones de estudios estáticos lineales son más precisas para las superficies curvadas que entran en contacto.

Ventajas: Mejoras la precisión y convergencia de contacto para el contacto en superficies curvas.

  • Cambio de caras de origen y de destino para las interacciones locales
    En el caso de las interacciones locales, puede cambiar las selecciones de geometría entre los conjuntos de origen y destino para solucionar los problemas de convergencia. Cuando se trabaja con geometrías complejas que tienen varias caras, alternar las entidades de geometría entre los conjuntos de origen y destino con la herramienta Intercambiar caras de interacción permite ahorrar tiempo.
  • Configuración de malla predeterminada: sin nodos comunes aplicados.
    La configuración de malla predeterminada en los nuevos estudios facilita las asignaciones de malla para la mayoría de los modelos.

El mallador basado en curvatura de combinado ha mejorado el rendimiento basado en una arquitectura de código optimizada, el multiproceso y el procesamiento multinúcleo paralelo.

El mallador mejorado puede mallar piezas y ensamblajes grandes mucho más rápido.

Las herramientas de diagnóstico mejoradas ayudan a examinar la calidad de una malla y a detectar elementos de mala calidad.

  • Solvers de ecuaciones de Simulation
    Se ha mejorado el tiempo de solución de los estudios estáticos lineales con muchos elementos de contacto de superficie a superficie. El solver Direct Sparse de Intel puede gestionar estudios estáticos lineales y no lineales con más de 4 millones de ecuaciones.

Ventaja: Utiliza la inteligencia integrada para elegir la mejor solución y ahorrar tiempo.

El postprocesamiento de los resultados de tensión y deformación se ha mejorado para modelos que tienen más de 10 millones de elementos.

  • Evaluador de simulación
    El evaluador de simulación se ha mejorado para indicar las definiciones de estudio relacionadas con el coeficiente de fricción asignado para contactos y materiales de los valores de coeficiente de Poisson no válidos.

La enumeración de cargas de conector de pasador en las juntas de pasador es más precisa para las fuerzas cortantes y los momentos flectores en el sistema de coordenadas global o definido por el usuario.

  • Copia de los resultados de simulación en formato tabular en el portapapeles
    Puede copiar los resultados de la simulación en formato tabular que se muestran en los PropertyManagers en el portapapeles y pegar los datos copiados del portapapeles en un documento de Microsoft® Excel® o Word. Puede copiar las fuerzas de reacción, las fuerzas de cuerpo libre, las fuerzas de contacto/fricción, las fuerzas de conector y los resultados probados.

¿Qué estás buscando?
Filtrar por fecha